Neural fold formation at newly created boundaries between neural plate and epidermis in the axolotl.

نویسندگان

  • J D Moury
  • A G Jacobson
چکیده

According to a recent model, the cortical tractor model, neural fold and neural crest formation occurs at the boundary between neural plate and epidermis because random cell movements become organized at this site. If this is correct, then a fold should form at any boundary between epidermis and neural plate. To test that proposition, we created new boundaries in axolotl embryos by juxtaposing pieces of neural plate and epidermis that would not normally participate in fold formation. These boundaries were examined superficially and histologically for the presence of folds, permitting the following observations. Folds form at each newly created boundary, and as many folds form as there are boundaries. When two folds meet they fuse into a hollow "tube" of neural tissue covered by epidermis. Sections reveal that these ectopic folds and "tubes" are morphologically similar to their natural counterparts. Transplanting neural plate into epidermis produces nodules of neural tissue with central lumens and peripheral nerve fibers, and transplanting epidermis into neural plate causes the neural tube and the dorsal fin to bifurcate in the region of the graft. Tissue transplanted homotypically as a control integrates into the host tissue without forming folds. When tissue from a pigmented embryo is transplanted into an albino host, the presence of pigment allows the donor cells to be distinguished from those of the host. Mesenchymal cells and melanocytes originating from neural plate transplants indicate that neural crest cells form at these new boundaries. Thus, any boundary between neural plate and epidermis denotes the site of a neural fold, and the behavior of cells at this boundary appears to help fold the epithelium. Since folds can form in ectopic locations on an embryo, local interactions rather than classical neural induction appear to be responsible for the formation of neural folds and neural crest.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The origins of neural crest cells in the axolotl.

We address the question of whether neural crest cells originate from the neural plate, from the epidermis, or from both of these tissues. Our past studies revealed that a neural fold and neural crest cells could arise at any boundary created between epidermis and neural plate. To examine further the formation of neural crest cells at newly created boundaries in embryos of a urodele (Ambystoma m...

متن کامل

INTRODUCTION The initial stage in the development of the vertebrate nervous system is the formation of the neural plate from a section of dorsal ectoderm during neurulation. Lateral edges

The initial stage in the development of the vertebrate nervous system is the formation of the neural plate from a section of dorsal ectoderm during neurulation. Lateral edges of the neural plate subsequently protrude to form the neural folds, which eventually fuse at the dorsal midline producing the neural tube. During this stage of morphogenesis, some neural fold cells migrate out of the neura...

متن کامل

Migratory patterns and developmental potential of trunk neural crest cells in the axolotl embryo.

Using cell markers and grafting, we examined the timing of migration and developmental potential of trunk neural crest cells in axolotl. No obvious differences in pathway choice were noted for DiI-labeling at different lateral or medial positions of the trunk neural folds in neurulae, which contributed not only to neural crest but also to Rohon-Beard neurons. Labeling wild-type dorsal trunks at...

متن کامل

The genesis of avian neural crest cells: a classic embryonic induction.

Neural crest cells arise from the ectoderm and are first recognizable as discrete cells in the chicken embryo when they emerge from the neural tube. Despite the classical view that neural crest precursors are a distinct population lying between epidermis and neuroepithelium, our results demonstrate that they are not a segregated population. Cell lineage analyses have demonstrated that individua...

متن کامل

Neurulation in the Mexican salamander { Ambystoma mexicanum ) : a drug study and cell shape analysis of the epidermis and the neural plate By RUDOLF

We analysed the neurulation movements in the Mexican salamander Ambystoma mexicanum. Embryos were exposed to colchicine or nocodazole prior to neural fold formation. Exposure to these drugs prevented the anterior neural folds from closing. Neurulation however proceeded normally in the posterior regions of the embryo. We were unable to find apically constricted cells in the neural plate of colch...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Developmental biology

دوره 133 1  شماره 

صفحات  -

تاریخ انتشار 1989